Epifanio Mamani Ticona

Determinação Experimental das Caraterísticas de Transferência de Calor de um Gerador de Pasta de Gelo

TESE DE DOUTORADO

DEPARTAMENTO DE ENGENHARIA MECÂNICA Programa de Pós–graduação em Engenharia Mecânica

Rio de Janeiro Março de 2007

Epifanio Mamani Ticona

Determinação Experimental das Caraterísticas de Transferência de Calor de um Gerador de Pasta de Gelo

Tese de Doutorado

Tese apresentada ao Programa de Pós-graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica da PUC-Rio como parte dos requisitos parciais para obtenção do título de Doutor em Engenharia Mecânica

> Orientador: Prof. Sergio Leal Braga Co-Orientador: Prof. José Alberto dos Reis Parise

Rio de Janeiro Março de 2007

Pontifícia Universidade Católica do Rio de Janeiro

Epifanio Mamani Ticona

Determinação Experimental das Caraterísticas de Transferência de Calor de um Gerador de Pasta de Gelo

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós–graduação em Engenharia Mecânica do Departamento de Engenharia Mecânica do Centro Técnico Científico da PUC–Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Sergio Leal Braga Orientador Departamento de Engenharia Mecânica — PUC-Rio

Prof. José Alberto dos Reis Parise Co–Orientador Departamento de Engenharia Mecânica — PUC–Rio

> Prof. Luis Fernando Alzuguir Azevedo PUC-Rio

> > Prof. Carlos Valois Maciel Braga PUC-Rio

> > Prof. José Viriato Coelho Vargas UFPR

Prof. Juan José Milón Guzmán Universidad Católica San Pablo

Prof. Alejandro Pablo Arena Centro Regional de Investigaciones Científicas e Tecnológicas, Argentina

Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico — PUC–Rio

Rio de Janeiro, 01 de Março de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Epifanio Mamani Ticona

Graduou–se em Engenharia na Universidad Nacional San Agustin (Arequipa, Perú), possui graduação em dupla Habilitação: Engenharias Mecânica/Elétrica. Desenvolveu, para a obtenção de seu grau de Mestre em Ciências em Engenharia Mecânica, um sistema de geração de pasta de gelo no Laboratório de Refrigeração e Aquecimento da PUC-Rio, dando início a uma nova linha de pesquisa, na área de sistemas de armazenamento de energia e fluidos térmicos avançados.

Ficha Catalográfica

Ticona, Epifanio Mamani

Determinação Experimental das Caraterísticas de Transferência de Calor de um Gerador de Pasta de Gelo / Epifanio Mamani Ticona ; orientador: Sergio Leal Braga ; co-orientador: José Alberto dos Reis Parise. — 2007.

177 f. : il. ; 30 cm

Tese (Doutorado em Engenharia Mecânica) — Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007.

Inclui bibliografia.

 Engenharia mecânica – Teses.
 Armazenamento de energia térmica.
 Pasta de gelo.
 Trocador de calor de superfície raspada.
 Fluidos refrigerantes secundários bifásicos.
 Braga, Sergio Leal.
 Parise, José Alberto dos Reis.
 Pontifícia Universidade Católica do Rio de Janeiro.
 Departamento de Engenharia Mecânica.
 Título.

CDD: 621

Agradecimentos

Aos meus orientadores Professores Sergio Leal Braga e José Alberto dos Reis Parise, pelo ensinamento, apoio de sempre, pela paciência e incentivo para a realização deste trabalho. Expresso toda minha gratidão, ao Professor Parise, pelo auxílio nas correções ao redigir o presente documento.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), CAPES e à PUC–Rio, pelos auxílios concedidos, sem os quais este trabalho não poderia ter sido realizado.

Aos meus pais, Bartolome e Simona, minha permanente gratidão e admiração.

Aos meus irmãos Wilfredo, o grande Jaime, Patricia e toda minha família.

A todos meus amigos. Em especial, aos que conheci na acolhedora comunidade da PUC-Rio: Elizabet, Mao, Frank, Daniel, Hugo, Paul, Luis. E amigos do laboratório de Reologia: Juliana, Raul, Joel, Sygifredo, Teresa, Melisa, Danmer.

Aos professores membros da banca examinadora, pelos comentários e valorosas sugestões para a elaboração do documento final.

Aos professores e funcionários do departamento de Engenharia Mecânica da PUC–Rio, que contribuíram com meu crescimento profissional, pessoal e a realização deste trabalho.

Aos funcionários do ITUC/PUC-Rio.

Ticona, Epifanio Mamani; Braga, Sergio Leal; Parise, José Alberto dos Reis. **Determinação Experimental das Caraterísticas de Transferência de Calor de um Gerador de Pasta de Gelo**. Rio de Janeiro, 2007. 177p. Tese de Doutorado — Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

Um gerador de pasta de gelo foi desenvolvido para o estudo experimental de suas características de transferência de calor. Uma das características da pasta de gelo é que pode ser bombeada como qualquer líquido. O gerador de pasta de gelo é um evaporador, do tipo trocador de calor de superfície raspada com intensificação mecânica de transferência de calor. Foi estabelecida a influência de vários parâmetros na transferência de calor no gerador de pasta de gelo: a vazão mássica, a velocidade de rotação do raspador, a temperatura da parede na interface, a temperatura de operação da solução aquosa, entre outros. Estudou-se tanto a transferência de calor com ou sem mudança de fase. Utilizaram-se soluções aquosas de etanol com diferentes concentrações. A pasta de gelo era produzida continuamente sem acumulação no evaporador. O gerador era parte de um sistema integral contendo os seguintes componentes: o sistema de medição da fração de gelo "on-line", através da medição da massa específica da pasta de gelo; uma bomba helicoidal de cavidade progressiva, que permitia controlar a vazão, por meio de um variador de freqüência; um aquecedor elétrico, atuando como carga térmica, com a possibilidade de variar a capacidade desta carga térmica e, com isto, o controle da temperatura de operação do sistema; e o sistema de aquisição de dados. Foi estabelecido um modelo para determinar, experimentalmente, o número de Nusselt e, por conseguinte, o coeficiente interno de transferência de calor da pasta de gelo. Utilizou-se uma unidade condensadora convencional, com R22 como fluido refrigerante. A pasta de gelo resultante era bombeada continuamente em um circuito fechado, assegurando o estudo de um fluido homogeneamente distribuído, visto que o circuito não permitia a acumulação de pasta de gelo. Os sistemas de geração de pasta de gelo apresentam potencial para reduzir significativamente os custos de capital inicial e operação, quando comparados com tecnologias de sistemas de termoacumulação estáticos de gelo ou dinâmicos, como o "ice harvesting".

Palavras-chave

Armazenamento de energia térmica, Trocadores de calor de superfície raspada, Pasta de gelo, Fluidos refrigerantes secundários bifásicos

Abstract

Ticona, Epifanio Mamani; Braga, Sergio Leal; Parise, José Alberto dos Reis. **Experimental determination of heat transfer characteristic in an ice slurry generator**. Rio de Janeiro, 2007. 177p. PhD. Thesis — Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

An ice slurry generator for was developed for the experimental study of its heat transfer characteristics. One of the main characteristic of ice slurry is that it can be pumped as any liquid. The ice slurry generator is an evaporator, with mechanical heat transfer enhancement, by surface scraping. The dependence of several parameters on heat exchanger performance was established. They included: mass flow rate, scraped rotational velocity, surface temperature, solution operating temperature. Single and two-phase flow was studied. Aqueous ethanol solutions, of different concentrations, were used. Ice slurry was produced on a continuous basis. The experimental apparatus consisted of the heat exchanger itself, an on-line ice mass fraction measurement device, a helicoidal positive displacement variable flow rate pump, an electrical heater, the data acquisition system and a R22 condensing unit. The ice slurry was pumped continuously on a closed circuit, providing a homogeneous fluid, as no accumulation of ice was possible. Ice slurry systems have the potential of significant reduction on capital and maintenance costs, when compared to traditional technologies, static or dynamic, of ice thermoaccumulation.

Keywords

Cold Thermal energy storage; Scraped surface evaporators, Ice slurry, Secondary refrigerants.

Conteúdo

1 Introdução	10
1 1 Fluidos refrigerantes primários e secundários	10
1.2 Pasta de gelo	21
1.2 Definições	21
1.2.1 Dennições 1.2.2 Vantagens da tecnologia de pasta de gelo	21
1.3 Objetivos da presente pesquisa	25
1.4 Revisão Bibliográfica	$\frac{20}{26}$
1.5 Produção de pasta de gelo	28
1.5 1 Geração de pasta de gelo nor super-resfriamento	20
1.5.2 Geração de pasta de gelo por contato direto	29
1.5.2 Geração de pasta de gelo por vácuo	30
1.5.4 Geradores de pasta de gelo de superfície raspada	31
1.6 Organização do trabalho	33
2 Características e propriedades termofísicas da pasta de gelo	34
2.1 Propriedades Termofísicas do gelo e de soluções aquosas	34
2.1.1 Propriedades Termofísicas do Gelo	34
2.1.2 Propriedades Termofísicas de soluções aquosas	37
2.2 Propriedades Termofísicas da pasta de gelo	41
2.2.1 Temperatura de solidificação da pasta de gelo	41
2.2.2 Massa específica da pasta de gelo	43
2.2.3 Condutividade térmica da pasta de gelo	44
2.2.4 Entalpia da pasta de gelo	45
2.2.5 Calor específico aparente da pasta de gelo	49
2.2.6 Viscosidade dinâmica da pasta de gelo	50
3 Aparato experimental	53
3.1 Descrição do sistema	55
3.1.1 A bomba hidráulica	55
3.1.2 O gerador de pasta de gelo	56
3.1.3 A carga térmica	59
3.1.4 O medidor de vazão e massa específica da pasta de gelo	59
3.1.5 A unidade condensadora	61
3.1.6 O medidor de vazão do fluido refrigerante	61
3.1.7 O painel de controle elétrico	61
3.1.8 Isolamento térmico	62
3.2 Instrumentação da instalação experimental	63
3.2.1 Medição da temperatura	63
3.2.2 Medição da pressão	63
3.2.3 Medição da potência elétrica da carga térmica	64
3.2.4 Aquisição de dados	65
3.3 Procedimento experimental	66
3.4 Processamento dos dados	68

3.4.1 Funções macro utilizadas no processamento de dados	69
3.4.2 Procedimento de processamento e redução dos dados	71
4 Trocadores de calor de superfície raspada	72
4.1 Parâmetros adimensionais	74
4.2 Características de transferência de calor sem mudança de fase	76
4.2.1 Modelo de penetração de calor	76
4.2.2 Correlações empíricas para a transferência de calor	82
4.3 Transferência de calor com mudança de fase	84
4.3.1 Correlações Empíricas para a transferência de calor com mudança	01
de lase	. 04
4.4 Metodologia para a determinação experimental do número de Nussen	. 09
4.4.2 O caso da condução multidimensional	91
4.5. Cálculo da taxa de transferência de calor no gerador	103
4.5.1 Potência mecânica dissipada devido ao mecanismo raspador	104
5 Resultados	109
5.1 Considerações iniciais	109
5.1.1 Tamanho e forma dos cristais de gelo	109
5.1.2 Análise do regime transiente da geração de pasta de gelo	111
5.2 Validação do modelo de determinação experimental do número de	110
Nusselt	110
5.3 Numero de Nusseit para troca de calor sem mudança de fase	121
5.4 Comparação da transferência de calor com mudança de fase	120
6 Conclusões e recomendações para trabalhos futuros	135
6.1 Conclusões	135
6.2 Recomendações para trabalhos futuros	137
Referências Bibliográficas	138
A Análise de Incertezas	146
A.1 Avaliação da incerteza padrão do tipo A	146
A.2 Incerteza padrão do tipo B	148
A.3 Medição de uma magnitude com diferentes métodos de medição	148
A.4 Determinação das incertezas	150
	150
A.4.1 Propriedades termofisicas	100
A.4.1 Propriedades termotisicas A.4.2 Taxa de transferência de calor na interface	$150 \\ 151$
A.4.1 Propriedades termotisicasA.4.2 Taxa de transferência de calor na interfaceA.4.3 Fração de gelo	150 151 151
 A.4.1 Propriedades termotisicas A.4.2 Taxa de transferência de calor na interface A.4.3 Fração de gelo A.4.4 Número de Reynolds rotacional 	150 151 151 152
 A.4.1 Propriedades termotisicas A.4.2 Taxa de transferência de calor na interface A.4.3 Fração de gelo A.4.4 Número de Reynolds rotacional A.4.5 Número de Reynolds axial 	150 151 151 152 152
 A.4.1 Propriedades termotisicas A.4.2 Taxa de transferência de calor na interface A.4.3 Fração de gelo A.4.4 Número de Reynolds rotacional A.4.5 Número de Reynolds axial A.4.6 Número de Prandtl A.4.7 Detência dissinada 	150 151 151 152 152 153
 A.4.1 Propriedades termotisicas A.4.2 Taxa de transferência de calor na interface A.4.3 Fração de gelo A.4.4 Número de Reynolds rotacional A.4.5 Número de Reynolds axial A.4.6 Número de Prandtl A.4.7 Potência dissipada A.4.8 Número de Nueselt local 	150 151 151 152 152 153 153 153
 A.4.1 Propriedades termotisicas A.4.2 Taxa de transferência de calor na interface A.4.3 Fração de gelo A.4.4 Número de Reynolds rotacional A.4.5 Número de Reynolds axial A.4.6 Número de Prandtl A.4.7 Potência dissipada A.4.8 Número de Nusselt local A.4.9 Número de Nusselt módio 	150 151 151 152 152 153 153 153 154
 A.4.1 Propriedades termotisicas A.4.2 Taxa de transferência de calor na interface A.4.3 Fração de gelo A.4.4 Número de Reynolds rotacional A.4.5 Número de Reynolds axial A.4.6 Número de Prandtl A.4.7 Potência dissipada A.4.8 Número de Nusselt local A.4.9 Número de Nusselt médio 	150 151 151 152 152 153 153 153 154
 A.4.1 Propriedades termotisicas A.4.2 Taxa de transferência de calor na interface A.4.3 Fração de gelo A.4.4 Número de Reynolds rotacional A.4.5 Número de Reynolds axial A.4.6 Número de Prandtl A.4.7 Potência dissipada A.4.8 Número de Nusselt local A.4.9 Número de Nusselt médio B Medida da fração de gelo na pasta de gelo	150 151 151 152 152 153 153 153 154 155

B.1.1 Determinação da fração de gelo por medição da temperatura da pasta de gelo	156
B.1.2 Determinação da fração de gelo por medição da energia interna	
da pasta de gelo	156
B.1.3 Determinação da fração de gelo por medição da massa específica	157
B.2 Método adotado	157
B.3 Parâmetros e variáveis importantes	158
B.4 Dados experimentais e redução de dados	160
B.5 Resultados	161
C Medida de Temperatura	163
C.0.1 Redução dos dados	164
C.1 Medição de diferença de temperatura	164
C.1.1 Calibração da termopilha	165
C.1.2 Ajuste por mínimos quadrados	166
D Planejamento da tese	168
D.1 A serpentina de tubo de cobre	168
D.2 O circuito hidráulico	171
E Especificações técnicas dos outros componentes	172
F Solução da Equação de transferência de calor por condução	176

Lista de Figuras

1.1	Diagrama de um sistema de refrigeração com ciclos primário e secundário e termoacumulação.	20
1.2	Fotografia de cristais de gelo em uma pasta de gelo (tamanho da fotografia 1061 μ m \times 762 μ m) [4].	23
1.3	Área total, A, de todos os cristais de gelo supostamente esféricos de diâmetro d_p em 1 kg de pasta de gelo [4].	24
1.4	Esquema de sistema de produção de pasta de gelo por super- resfriamento da água.	29
1.5	Esquema de sistema de produção de pasta de gelo por contato direto de fluidos.	30
1.6 1.7	Esquema de sistema de produção de pasta de gelo por vácuo [15]. Esquema de sistemas de geração de pasta de gelo. a) Gerador com raspadores planos [27], b) Gerador com raspadores de haste metálica Paul Mueller Co. [14], c) Gerador de discos [15], d) Gerador com raspador helicoidal [26].	31 32
2.1	Massa específica e viscosidade dinâmica de uma solução etanol- água obtidas com a Eqs. 2-7 e 2-9, propostas por Melinder [52]. Os números na figura representam as linhas de fração em massa	
2.2	do soluto constante. Calor específico e condutividade térmica de uma solução etanol- água obtidos com a Eq. 2-7, proposta por Melinder [52]. Os números na figura representam linhas de fração em massa do	39
2.3	soluto constante. Variação da temperatura de solidificação com a concentração de uma solução aquosa de etanol, e diagrama de fase de uma	41
2.4	solução aquosa. A formação dos cristais de gelo muda a concentração do fluido	42
	portador.	43
2.5 2.6	Massa específica da pasta de gelo com uma solução etanol-água. Condutividade térmica da pasta de gelo com solução etanol-	44
0.7	água.	46
2.7	Diagrama de fase de entalpia de uma solução de cloreto de sodio- água.	47
2.8	Entalpia da pasta de gelo de uma solução etanol-água.	50
2.9	Calor específico aparente da pasta de gelo.	51
2.10	Viscosidade dinâmica da pasta de gelo.	52
3.1	Sistema de geração de pasta de gelo.	53
3.2	Fotografia do sistema de geração de pasta de gelo.	54
3.3	(a) Fotografia da bomba helicoidal NEMO (com motor elétrico	
	acionador e isolante térmico) e (b) detalhe interno da bomba.	56
3.4	Fotografia do gerador de pasta de gelo.	57
3.5	Diagrama interno do gerador de pasta de gelo.	58

3.6	Fotografia e esquema do aquecedor elétrico.	60
3.7	Fotografia e esquema do medidor de vazão e da massa específica	
	da pasta de gelo CMF050 ELITE [®] em conjunto com o RTD.	60
3.8	Fotografia do medidor de vazão de fluido refrigerante CMF010	
	ELITE [®] .	62
3.9	Eotografia do painel elétrico.	62
3 10	Detalhe de localização de termonar na parede de troca de calor	63
3 11	Detalhe de localização do medidor de pressão	64
3 12	Entrografia do aquisitor de dados	65
3.13	Interface de aquisição de dados.	66
4.1	Trocador de calor de superfície raspada.	73
4.2	Fotografia do interior do gerador.	73
4.3	Número de Revnolds rotacional crítico Re_{recrit} versus a razão de	
-	diâmetros d/D .	75
4.4	Vista de topo de um trocador de calor de superfície raspada com	
	o raspador mostrando a camada de líquido estacionário removida	
	periodicamente pelos raspadores.	77
4.5	Considerações geométricas na equação de difusão de calor, perto	
	da interface do fluido com a parede.	78
46	Perfis de temperatura em diferentes tempos após a passagem	
	do raspador na camada líquida da interface	80
47	Distribuição da temperatura adimensional θ vista de topo de	00
1.7	um trocador de calor de superfície raspada com um raspador	80
48	Esquema de trocador de calor de superfície raspada e compo-	00
4.0	nentes de velocidade	86
10	Comparação do número de Nusselt do modelo (Eq. 4.46) com	00
4.9	o número do Nusselt experimental o a fração do golo, por Bol k	
	Lallemand [26]	87
1 10	Evolução da temporatura do parado (ponto 6) para um trocador.	01
4.10	Evolução da temperatura de parede (ponto o) para um trocador	
	de calor operando com solução aquosa de sacarose, concentração 15%	
	15%, Vazao 0,14 m/s e velocidade de rotação do mecanismo	00
4 1 1	raspador de 700 rpm [27].	88
4.11	Distribuição de temperatura na parede do trocador.	90
4.12	Condução bidimensional em uma parede plana rectangular.	93
4.13	Gradiente de temperatura na interface com diferentes razoes de	06
4 1 4	aspecto W/L .	90
4.14	Relação entre o gradiente de temperatura na interface e a	07
4 1 5	temperatura adimensional $\theta(x, W)$.	97
4.15	Condução bidimensional em uma parede plana rectangular, com	07
4.1.0	distribuição uniforme de temperatura.	97
4.16	Relação entre o gradiente de temperatura na interface e a	0.0
	temperatura adimensional $\theta(x, W)$ (caso 2).	98
4.17	Temperaturas $T_m, T_{p,i}, T_{p,e}$.	99
4.18	Campo de temperaturas.	100
4.19	Medidor de fluxo de calor de filme delgado ("Thin Film Heat	101
	Flux Sensor").	101
4.20	Volume de controle do gerador de pasta de gelo.	104

4.21 4.22	Sistema composto pelo gerador de pasta de gelo. Resultado da variação do número de potência com o número de Reynolds rotacional.	107 108
5.1	Foto de cristais de gelo em uma amostra de pasta de gelo produzida a partir de uma solução de etanol com concentração em massa de 12% e fração de gelo de 0,22 kg/kg, a uma	
5.2	temperatura ambiente de 20 °C. Foto de cristais de gelo em uma amostra de pasta de gelo produzida a partir de uma solução de etanol com concentração em massa de 12% e fração de gelo de 0,22 kg/kg, a uma temperatura ambiente de 20 °C	110
5.3	Evolução da temperatura e massa específica da pasta de gelo ao longo do processo de geração da pasta de gelo na entrada e saída do gerador, com uma concentração de etanol de 12%, vazão de	110
5.4	0,18 kg/s e freqüência de rotação do mecanismo raspador, 11 s ^{-1} Evolução da temperatura e fração de gelo da pasta de gelo ao longo do processo de geração da pasta de gelo na entrada e saída do gerador, com concentração de etanol 12%, vazão de	.111
5.5	0,18 kg/s e freqüência de rotação do mecanismo raspador, 11 s ⁻¹ Registro de um incidente onde ocorreu o desligamento da bomba do sistema devido ao aumento da fração de gelo. Pode-se observar as flutuações na medida da massa específica antes do	.112
5.6	desligamento. Condições de operação: concentração de etanol, 15,8% e freqüência de rotação do mecanismo raspador, 9 s ⁻¹ . Variação da vazão da pasta de gelo com valor pre-fixado no variador de freqüência. Condições de operação: concentração de etanol, 12%; vazão em regime permanente de 0,18 kg/s e	113
5.7	Variação da vazão com uma bomba centrifuga CAM W-4C DANCOR, com solução aquosa de etanol de 13% e freqüência	114
5.8	de rotação do mecanismo raspador, 6 s ⁻¹ . Exemplo de como o controle da carga térmica permite atingir o regime permanente no processo de geração da pasta de gelo. Condições de operação: concentração de etanol, 12%; vazão de 0,18 kg/s e a freqüência de rotação do mecanismo raspador, 11 s ⁻¹	115
5.9	Verificação experimental da relação linear entre o fluxo médio de calor na interface, $\overline{q''}$, e a diferença de temperatura média, $\overline{\Delta T}$ (Eq. 4.05)	117
5.10	Variação do número de Nusselt com a posição axial com rotor parado ($N = 0$), sem mudança de fase, com solução aquosa de etanol com concentração de 27%, vazão 0,29 kg/s, $Pr = 70$ e	11(
	$Re_a = 350$ (escoamento laminar).	118

PUC-Rio - Certificação Digital Nº 0221007/CA

5.11	Comparação do número de Nusselt local experimental e o	
	numero de Nusseit pela correlação de Lundberg et al. [77], para	
	escoamentos anuares (Eq. 5-2). Foi utilizada solução aquosa de estanol com concentração do 27% vazão do 0.20 kg/s $Pr = 70$	
	etalloi con concentração de 27%, vazao de 0,29 kg/s, $T = 70$, $R_{e_{1}} = 350$ (occoamento laminar)	190
Б 10	$Re_a = 550$ (escoamento familiar).	120
J.12	condiçãos do escoamento sem mudança do faso o o número do	
	Nusselt da correlação obtida, equação (5-5)	199
5 1 3	Comparação do número de Nusselt médio experimental com	122
5.15	outras correlações da literatura	123
5.14	Comparação do número de Nusselt médio experimental com	
-	correlações da literatura, para os quais os números de Re_a , Re_r	
	e Pr estão dentro dos limites de validade do presente trabalho.	124
5.15	Variação da fração de gelo com a temperatura.	125
5.16	Variação da diferença entre as temperaturas médias da parede	
	interna e do fluido, $\overline{T}_{p,i}$ e \overline{T}_m com o número de Nusselt.	126
5.17	Variação com a temperatura do coeficiente interno de trans-	
	ferência de calor com e sem mudança de fase, com solução	
	aquosa de etanol de 15%, vazão média de operação 0,12 kg/s,	
	freqüência de rotação do eixo do raspador 9,4 s $^{-1}$ e temperatura	
	média de evaporação do fluido refrigerante de -18 °C.	127
5.18	Variação com a temperatura do coeficiente interno de trans-	
	ferência de calor com e sem mudança de fase, com solução	
	aquosa de etanol de 15%, vazão média de operação $0,25 \text{ kg/s}$,	
	frequencia de rotação do eixo do raspador 11,9 s ⁻¹ e tempe-	
	ratura media de evaporação do fluido refrigerante de -18 °C.	107
E 10	Variação do número do Nuesolt douido à coão do maconiemo do	127
5.19	raspagem e à mudanca de face, conforme Stamation et al. [16]	198
5 20	Variação do número de Nusselt com o número de Reynolds	120
J.20	rotacional	128
5 21	Variação do número de Nusselt com o número de Revnolds axial	120
5.22	Variação do número de Nusselt com o número de Prandtl.	129
5.23	Comparação do número de Nusselt médio experimental com o	
	número de Nusselt calculada pela Eg. 5-7 .	132
5.24	Comparação do número de Nusselt médio experimental com	
	correlações disponíveis na literatura para condições semelhantes	
	ao do presente trabalho.	132
5.25	Comparação do número de Nusselt médio experimental com o	
	número de Nusselt previsto por correlações da literatura.	133
5.26	Esquema de mecanismo helicoidal que escova a superfície do	
	gerador [26].	134
5.27	Evolução da temperatura de parede (ponto 6) para um trocador	
	de calor operando com solução aquosa de sacarose, concentração	
	15%, vazão 0,14 m/s e velocidade de rotação do mecanismo	
	raspador de 700 rpm [27].	134

PUC-Rio - Certificação Digital Nº 0221007/CA

B.1	Incertezas associadas à determinação da fração de gelo por medição da temperatura da pasta de gelo.	156
B.2	Esquema de medição da massa específica com medidor Coriolis e medição externa de temperatura com RTD e transmissor	
	RF19739.	159
В.3	etanol com diferentes frações, sem calibração.	159
B.4	Medição da massa específica das soluções aquosas de água-	1.0.0
	etanol com diferentes frações, após a calibração.	160
B.5	Variação da massa específica do medidor após a calibração.	162
C.1	Fotografia de banho termostático para a calibração dos termo-	
	pares.	164
C.2	Error de medição de termopar.	165
C.3	Esquema de uma termopilha.	167
C.4	Especificações de adesivo e pasta térmica Omega.	167
D.1	Esquema do tubo de cobre em contato na parede do gerador de pasta de gelo e a distribuição de temperatura prevista por	
	solução numérica.	169
D.2	Diagrama de distribuição da temperatura (resultado da modela- gem numérica).	169
D.3	Esquema do tubo de cobre com aleta na parede do gerador de pasta de gelo e o perfil de temperatura previsto para a mesma.	170
D.4	Diagrama de perfil de temperatura prevista numericamente, para uma superfície com aleta.	170
E.1	Especificações técnicas da unidade condensadora.	173
E.2	Especificações técnicas da unidade condensadora (continuação).	174
E.3	Performance do compressor.	175

Lista de Tabelas

2.1	Coeficientes C_{ij} da equação polinomial de Melinder [52]	40
5.1	Coeficientes para a obtenção do numero de Nusselt local em es- coamentos laminares em dutos anulares com razão de diâmetros $r^* = d/D$ e um comprimento adimensional \overline{z} [77].	119
B.1	Coeficientes de calibração para medição de massa específica do CORIOLIS CMF025	161
B.2	Coeficientes de calibração para medição de massa específica do CORIOLIS CMF050	161

Lista de Símbolos

A	área da interface, m^2
c_p	calor específico a pressão constante, kJ/kg $\cdot{\rm K}$
C	relação entre gradiente de temperatura e diferença de temperatura
C_D	coeficiente de arrasto
D	diâmetro interno do gerador, m
$D_h = D - d$	diâmetro hidráulico, m
d	diâmetro do rotor, m
F_D	Força de arrasto, N
H_{Tmf}	linha de entalpia de mudança de fase
h	entalpia específica interna, kJ/kg
h	coeficiente de transferência de calor, ${\rm W/m}^2 \cdot {\rm K}$
k	condutividade térmica, W/m \cdot K
L	comprimento do raspador, m
Lc	Dimensão característica, m
N	freqüência de rotação do rotor, s ⁻¹
n_R	número de raspadores
\overline{Nu}	número de Nusselt médio
Nu_z	número de Nusselt local
\dot{m}	vazão mássica , kg/s
p_i	parâmetro
Р	potência dissipada pelo raspador, W
Pe	número de Péclet
Po	número de Potência
Pr	número de Prandtl
\dot{Q}	taxa de transferência de calor, W
$q^{\prime\prime}$	fluxo de calor, W/m^2
$R = \frac{D}{2}$	Raio interno do gerador, m
R_p	Resistência térmica da parede, K/W
Re_a	número de Reynolds axial
Re_r	número de Reynolds rotacional
r	coordenada radial, m
$r^* = d/D$	razão de diâmetros
S	desvio padrão experimental da média
t	$ ext{tempo}, ext{s}$
T	temperatura, o C
T_m	temperatura de mistura, $^{o}\mathrm{C}$
T_{pi}	temperatura da pare de interna,º ${\rm C}$
T_{pe}	temperatura da parede externa, $^{o}\mathrm{C}$

- u_{pi} incerteza padrão relativa do parâmetro p_i
- \dot{V} fluxo volumétrico, m³/s
- v_a velocidade axial média, m/s
- x concentração ou fração em massa, kg/kg
- w velocidade do raspador, m/s
- z coordenada axial, m
- \overline{z} comprimento adimensional

Símbolos Gregos

α_l	difusividade térmica do meio, m^2/s
ΔT	diferença de temperatura, K
Δh_M	entalpia de reação, kJ/kg
δp_i	incerteza padrão do parâmetro p_i
θ	temperatura adimensional
μ	viscosidade dinâmica, Pa $\cdot{\rm s}$
ν	viscosidade cinemática, m^2/s
ρ	massa específica, kg/m^3
au	período de tempo entre a passagem de raspadores
φ	concentração em volume ou fração volumétrica, $\mathrm{m}^3/\mathrm{m}^3$
ψ	coeficiente de correção do modelo teórico
Φ_{bi}	multiplicador bifásico

Índices

- *i* interno
- $_{e}$ entrada, externo
- $_{fp}$ fluido portador
- g gelo
- l líquido
- $_m$ mistura
- $_o$ total (global)
- $_p$ parede
- $_{pg}$ pasta de gelo
- $_{Ref}$ referência
- $_{s}$ saída
- $_{teor}$ teórico

Joy in looking and comprehending is nature's gift

Albert Einstein, .